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The problem of finding the correct conditions for the pressure in the time discretized 
Navier-Stokes equations when the incompressibility constraint is replaced by a Poisson 
equation for the pressure is critically examined. It is shown that the pressure conditions 
required in a nonfractional-step scheme to formulate the problem as a system of split second- 
order equations are of an integral character and similar to the previously discovered integral 
conditions for the vorticity. The novel integral conditions for the pressure are used to derive a 
finite element method which is very similar to that developed by Glowinski and Pironneau 
and is the finite element counterpart of the influence matrix method of Kleiser and 
Schumann. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

The numerical simulation of incompressible viscous flows by means of a split for- 
mulation using only second-order partial differential equations poses a major dif- 
ficulty due to the lack of boundary conditions for the vorticity or pressure variables 
(see, e.g., Cl]). For the case of the nonprimitive variable equations, the problem is 
solved satisfactorily by supplementing the vorticity transport equation with con- 
ditions of an integral character [2-51, so that numerical solutions of the equations 
in split form are obtained by means of finite differences [S-7], finite elements [S, 91 
and spectral methods [ 10, 111. For the case of the primitive variables, the problem 
of finding the appropriate conditions, which supplement the Poisson equation for 
the pressure used to replace the incompressibility condition, is more difficult. Its 
solution depends on whether a fractional-step or a one-step method is employed to 
discretize the Navier-Stokes equations in time. 

In the fractional-step or projection method developed by Chorin [12] and 
Temam [13] the momentum equation and the incompressibility condition are 
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treated separately in two fractional steps. An intermediate velocity field which does 
not satisfy the condition of incompressibility is calculated from the time discretized 
momentum e’quation with the pressure term omitted. Such a velocity field is then 
decomposed into its divergenceless and irrotational components, the former being 
the correct final velocity field and the latter being proportional to the gradient of 
the pressure field. When the second step equations are formulated as a Poisson 
problem for the pressure, the appropriate boundary conditions for this variable are 
obtained quite naturally in the form of homogeneous [ 14, p. 3991 or non- 
homogeneous [14, p. 4141 Neumann conditions, depending on the degree of 
implicitness of the time discretization scheme used in the first step (see also [ 1, 
pp. 164-1651). However, the Neumann conditions for the pressure are derived after 
the time splitting process so that they are of a purely numerical character and are 
not satisfied by the exact pressure solution (cfr. [14, p. 3991 or [l, p. 16213. 
Furthermore, fractional-step methods using an explicit treatment of the viscosity 
term present the difficulty that the velocity boundary conditions for the tangential 
components cannot be satisfied by the end-of-step velocity (see Cl.51 for a finite 
element implementation of the method and [16, pp. 146-1471 for a formulation of 
spectral type). The difficulty is related to the orthogonal decomposition theorem of 
the space of vector fields [ 171, which is basic to making the velocity field solenoidal 
in the second-step equations and assigns a very different role to the normal com- 
ponent of the velocity on the boundary with respect to the tangential ones. From a 
physical point of view, the incompressibility step is basically inviscid so that only 
the normal flow can be specified at the boundary in the second step [ 161. 

In nonfractional-step methods the momentum equation and the continuity 
equation are to be satisfied at the same time so that there is no impediment to 
imposing the complete boundary condition for the velocity simultaneously with the 
incompressibility condition or any of its equivalent substitutes. However, in one- 
step methods the lack of boundary values for the pressure presents particularly 
severe difficulties. Only two correct methods using an exact and noniterative 
evaluation of the pressure at the boundaries in the Stokes problem have appeared 
so far. Glowinski and Pironneau proposed a finite element formulation for solving 
the incompressible Navier-Stokes equations in two and three dimensions [is] 
which resorts to an additional equation for a scalar velocity potential. (see also 
[19, ZO]). Kleiser and Schumann developed a formulation based on the influence 
matrix method [21] which has been employed to compute 3D channel flows [Zl ] 
and 2D natural convection flows [22] by spectral approximations and 2D entry 
flows by finite differences [23]. These studies provide a correct perspective to the 
problem by introducing a supplementary (linear) problem to determine the lacking 
boutidary values of the pressure. However, this fundamental concept has not 
received the general acceptance it deserves, maybe because the physical inter- 
pretation of the aforementioned methods is lacking. 

This paper clarifies the problem in the spatial continuum for the case of the time 
discretized equations by providing the correct form of the conditions which sup- 
plement the Poisson equation for the pressure. The proper conditioning for the 
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pressure (gradient) will be shown to be of an integral character and similar to that 
for the vorticity [S]. Using these conditions, a finite element formulation for solv- 
ing steady and unsteady incompressible viscous flows is developed which is the 
natural counterpart for the primitive variables of the Glowinski-Pironneau method 
for the biharmonic problem [4]. Furthermore, the explicit recognition of the 
integral form of the pressure conditioning provides the interpretation of the 
Kleiser-Schumann influence matrix method [Zl] in the spatial continuum as well 
as a general framework for employing spatial discretizations of arbitrary type. 

2. PROBLEM FORMULATION 

Kleiser and Schumann have shown that, in order to formulate the Navier-Stokes 
equations using a Poisson equation for the pressure in place of the incompressibility 
condition for the velocity, such a condition is to be retained on the boundary [21]. 
For the time discretized problem, using a one-step, two-level scheme with the 
viscous and pressure terms evaluated implicitly, and the advection term explicitly, 
the following system of equations is obtained: 

(V-y)“n+l-vpn+L -yu”+f”, 

V2pn+L -V.f”, 

V.Un+llr=O, 

Un+llr=aN+l. 

(14 

(1.b) 

(1.c) 

(1.d) 

Here, u is the dimensionless velocity and p is the dimensionless pressure multiplied 
by the Reynolds number, called pressure for simplicity. Furthermore, y = Re/At, f = 
Re(u . V) u and a is the velocity prescribed on the boundary r of the domain Q and 
such that j n * a df = 0. According to the above scheme, the solution of the time 
dependent Navier-Stokes equations is reduced to the solution of a sequence of 
“unsteady” Stokes problems. 

Lack of boundary conditions for the pressure p”+’ prevents a direct solution of 
the properly formulated problem (1) as a system of split elliptic equations. 
However, proper conditions for p”+ ’ which make such a split formulation possible 
are obtained by considering the vector equivalent of the Green identity [24] for the 
Helmholtz operator Vt = (V’ - y), namely, 

s (v.V;u-uT;v)dQ 

= s (n.vV.u-n*uV*v+nxv*Vxu-nxu.Vxv)dI’, (2) 



PRESSURE INTEGRAL CONDITIONS 343 

where n denotes the outward normal unit vector on r. The Green identity (2) 
implies that the pressure field p”+’ defined by problem (1) satisfies the following 
integral conditions: 

s 
(Vp+l- ya”+T)qlyd2= -S(“.a”+‘V.Ir+“X8”+1.VXrly)dT (3) 

for any vector field qy solution of the Helmholtz problem 

(v2-y)~y=o, n.9rlr+0, nxq,l,=O. (4) 

Due to the explicit treatment of the advection in the above scheme, the integral 
conditions (3) for p”+ ’ depend only on the data f”, un and an + ’ of problem (I ) and 
do not involve values of the unknown velocity field II”+’ in the interior of the 
domain Q. Since the number of linearly independent fields qlr solution of problem 
(4) is equal to that of the boundary points, problem (1) can be reformulated %n the 
following equivalent form: 

V2P n+l= -V.f”, (5a) 

“f VP “+“.r(,~~=S(:u”-P’).11,~~-j(n.a”+’V.11;.+nxa~+’.Vx~,)dT; (5b) 

(V2-y)Un+l=Vpn+1-y”“+f”, (ha9 

un+l/r=an+l. (6b) 

Equations (5))(6) are the general factorized or split form of the time discretized 
Navier-Stokes equations for the primitive variables with the proper conditioning 
for the gradient of the pressure in the spatial continuum. Any method of spatial dis 
cretization of equations (5)-(6) is now appropriate. 

There is an exchange of roles which occurs in the case of the time discretized 
equations when passing from the nonprimitive variable representation to the 
primitive variable one. By considering the simple case with homogeneous integral 
conditions for both the vorticity and the pressure, the equations for evaluating the 
vorticity IS] and the pressure at a given time have the following forms: 

(V2 - Y 1 ry = g, s i,q dQ=O, vu = 0, 

and 

V”p = h, 
l 

Vp.qlydsl=O, (V2 - Y) q’ = 0, 
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respectively. Note that the vorticity field, a solution of a Helmholtz equation, is 
orthogonal to the kernel of the Laplace operator, whereas the pressure field, a 
solution of a (nonhomogeneous) Lapiace equation, is such that its gradient is 
orthogonal to the kernel of the same Helmholtz operator. 

3. PRESSURE EQUATION WITH INTEGRAL CONDITIONS 

Now consider the solution of the nonstandard part of problem (5~(6), namely, 
the Poisson equation (5a) for the pressure supplemented by the integral conditions 
(5b). To obtain the sought pressure field p”+ ’ separate it into its harmonic and 
nonharmonic components as follows: 

P “+‘(x)=po(x)+~p’(x;s’)rZ”+l(s’)ds’, (7) 

where, for any s’ E r, 

v2ps = 0, p’jr=6(s-s’), (8) 

and 

vp, = -v . T, p. jr = arbitrary, (9) 

6 denoting the Dirac delta function over the boundary r. The unknown An+ ’ is 
determined by solving the linear problem obtained by imposing that p”+’ satisfies 
the integral condition (5b). This gives 

where 

s 
A(s,s’)A”+‘(s’)ds’=jY+‘(~) (10) 

A(s, s’) = J VP’. q, dQ (11) 

and 

B”+‘(S)= -jVp,.llid~+s(yu”-i”).9?dsZ 

- (“.g+’ I V.q,+nxa”+‘.Vxq,)dT. (12) 

The supplementary linear problem (10) determines the harmonic component of the 
pressure field. The dimensionality of such a problem is equal to that of the boun- 
dary domain K 



A(s,s’)=[ [(V.u’)(V-w )+(Vxu')~(Vxw)+(Vp')~w+yu'~w] dQ (1%) 

pn+ l(s) = - 1 [(V . u())(V .w)+(Vxuo).(Vxw)+(Vpo).w+yu,.w]di2 

P 
+J (Y u”-f”).w dR. (19) 

The unknown 1” + ’ having been determined by solving the hnear problem (IO), the 
sought pressure p”+ I and velocity un + 1 are obtained as solutions of the following 
elliptic problems 
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4. COMPUTATIONAL SCHEME 

A and p”’ 1 are evaluated by means of the Glowinski-Pironneau method [4, 181 
generalized to vector fields. The fields qy are substituted by the vector functions w, 
where 

w arbitrary in 52, n*wI.=6(d-s). nxw/.=O, 

and d E r. The following “cascade” of elliptic problems is generated: 

v=pr = 0. p’ 1 r = 6(s - s’); 

(V’ - y) u’ = VP’, u’/r=O; 

and 

v=po= -V.f", p0 1 I = arbitrary; (16) 

(V2-y)u*==Vp*-yu"+f", MoI(-=ZPi. (17) 

Application of the vector Green identity (2) and integration by parts provide 

lppfif~= -V.f", pn+$=P+l+p&; 120) 

(V2-y)Un+l=Vpn+l-yun+f’l, un+ljr=an+l. (21) 

The use of the vector functions w instead of the vector fields ny offers two advan- 
tages: (i) the solution of Eqs. (4) and the storage of the fields nl, are avoided; (ii) the 
arbitrariness of the functions w at all internal points of 52 can be exploited by 
choosing w = 0 inside Q so that the domain of integration in relations (18)-( 19) can 
be reduced to a narrow strip along the boundary J: However, the use of the 
functions w in place of the fields qly requires the solution of an additional vector 
elliptic problem for each scalar elliptic problem. 

The present approach is different from the Glowinski-Pironneau method for the 
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primitive variables [18] in three respects: (i) there is a single scalar elliptic 
problem, instead of two, for each vector elliptic problem to be solved; (ii) the 
auxiliary field w in Eq. (1X)-( 19) is a vector variable instead of a scalar one; (iii) the 
operator A of the supplementary linear problem (10) is not symmetric. 

5. APPLICATIONS 

The elliptic problems introduced in Section 4 have been recast in weak 
variational form [25] and discretized in space by means of isoparametric 
quadrilateral bilinear elements with full integration, using the same mesh and the 
same order of interpolation for both the pressure and the velocity variables. 

Consider the classical driven cavity problem [26]. In the Fig. 1 the transient and 
steady-state profiles of the horizontal velocity along the vertical centreline for 
Re = 100 calculated by the present (primitive variable) method are compared with 
the corresponding results obtained by FD or FE nonprimitive variable methods. 
The pressure field is calculated by the present method without encountering the 
splitting in two uncoupled networks of pressure points (the so-called chequerboar- 
ding) or spurious pressure modes, even when a uniform mesh of equal elements is 
employed. Since the pressure is defined up to an arbitrary additive constant in this 
problem, the operator A defined in Eq. (11) turns out to be singular and the 
pressure value at a single point of the mesh is prescribed by standard methods. 

The general validity of the present finite element formulation is verified using the 
half-channel problem proposed by Roache [27], which is also the Prototype of 

Y 

I- 

l- 

Re = 100 

Steady state 

FIG. 1. Horizontal velocity along the vertical centreline in the driven cavity problem for Re = 100. @ 
u - p present formulation, finite elements 16 x 16; p, [ - I) formulation, finite differences 32 x 32 [6] 
or finite elements 16 x 16 [9]. 
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au x=0 
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FIG. 2. Channel flow geometry, boundary conditions and mesh for Re = 10. 

Flow in Complex Geometries of the IAHR Working Group on Refined Modelling 
of Flows (Fifth Meeting of IAHR, June 24-25 1982, Rome) [28]. The geometry, 
the boundary conditions and the finite element mesh for the case Re = 10 are shown 
in Fig. 2. 

Numerical solutions obtained by the present method for Re = 10 and Re = 100 
are in good agreement with those obtained by a fourth-order accurate spline ADI 
technique or bilinear finite elements using a [ - I// formulation and the same me&. 
In both cases the points of separation and reattachment are located between the 
same grid points by the three methods. For the higher value of the Reynolds num- 
ber (Fig. 3) the vorticity values along the channel wall calculated by the present 
method are compared with the results obtained by Roache [27]. 

These numerical results confirm the validity of the present formulation of the 
Navier-Stokes equations and its finite element implementation. The pra&& 
application of the proposed approach to large-scale real-life computations requires 
further efforts toward improving the overall computational efficiency of the method. 

RE = 100 

FIG. 3. Wall vorticity of the channel flow problem for Re = 100. @. o - p finite element present for- 
mulation; -, [ - $ finite difference formulation [27]. 
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